Application of a 2D frequency encoding sectoral approach to hyperpolarized 129Xe MRI at low field

J Magn Reson. 2022 Mar:336:107159. doi: 10.1016/j.jmr.2022.107159. Epub 2022 Feb 9.

Abstract

Inhaled hyperpolarized 129Xe MRI is a non-invasive and radiation risk free lung imaging method, which can directly measure the business unit of the lung where gas exchange occurs: the alveoli and acinar ducts (lung function). Currently, three imaging approaches have been demonstrated to be useful for hyperpolarized 129Xe MR in lungs: Fast Gradient Recalled Echo (FGRE), Radial Projection Reconstruction (PR), and spiral/cones. Typically, non-Cartesian acquisitions such as PR and spiral/cones require specific data post-processing, such as interpolating, regridding, and density-weighting procedures for image reconstruction, which often leads to smoothing effects and resolution degradation. On the other hand, Cartesian methods such as FGRE are not short-echo time (TE) methods; they suffer from imaging gradient-induced diffusion-weighting of the k-space center, and employ a significant number of radio-frequency (RF) pulses. Due to the non-renewable magnetization of the hyperpolarized media, the use of a large number of RF pulses (FGRE/PR) required for full k-space coverage is a significant limitation, especially for low field (<0.5 T) hyperpolarized gas MRI. We demonstrate an ultra-fast, purely frequency-encoded, Cartesian pulse sequence called Frequency-Encoding Sectoral (FES), which takes advantage of the long T2* of hyperpolarized 129Xe gas at low field strength (0.074 T). In contrast to PR/FGRE, it uses a much smaller number of RF pulses, and consequently maximizes image Signal-to-Noise Ratio (SNR) while shortening acquisition time. Additionally, FES does not suffer from non-uniform T2* decay leading to image blurring; a common issue with interleaved spirals/cones. The Cartesian k-space coverage of the proposed FES method does not require specific k-space data post-processing, unlike PR/FGRE and spiral/cones methods. Proton scans were used to compare the FES sequence to both FGRE and Phase Encoding Sectoral, in terms of their SNR values and imaging efficiency estimates. Using FES, proton and hyperpolarized 129Xe images were acquired from a custom hollow acrylic phantom (0.04L) and two normal rats (129Xe only), utilizing both single-breath and multiple-breath schemes. For the 129Xe phantom images, the apparent diffusion coefficient, T1, and T2* relaxation maps were acquired and generated. Blurring due to the T2* decay and B0 field variation were simulated to estimate dependence of the image resolution on the duration of the data acquisition windows (i.e. sector length), and temperature-induced resonance frequency shift from the low field magnet hardware.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Lung / diagnostic imaging
  • Magnetic Resonance Imaging / methods
  • Protons*
  • Rats
  • Signal-To-Noise Ratio
  • Xenon Isotopes*

Substances

  • Protons
  • Xenon Isotopes