New insights into the selective adsorption mechanism of cationic and anionic dyes using MIL-101(Fe) metal-organic framework: Modeling and interpretation of physicochemical parameters

J Contam Hydrol. 2022 May:247:103977. doi: 10.1016/j.jconhyd.2022.103977. Epub 2022 Feb 14.

Abstract

In the current study, iron-based metal organic framework (MOF) MIL-101(Fe) was successfully prepared via a facile solvothermal method. The as-synthesized MIL-101(Fe) was characterized by XRD, FE-SEM, FTIR, TGA and zeta potential techniques, and then employed as an adsorbent for methyl orange (MO) and methylene blue (MB) dyes. The adsorbed quantities of MO (1067 to 831 mg/g) were higher than those of MB (402 to 353 mg/g) indicating the high selectivity of MIL-101(Fe) towards the anionic dye at all temperatures (20-60 °C). Adsorption processes of MO and MB followed the pseudo-second order kinetics and the Langmuir equilibrium model. The interaction mechanism at a molecular level was analyzed and deeply interpreted via the advanced multilayer adsorption model. Steric parameters indicated that MO molecular aggregation (n) was 0.95-1.33 thus signifying the presence of multi-docking and multi-interactions mechanisms. The aggregated number of MB was superior to unity (i.e., n = 1.17-1.78) suggesting a vertical adsorption position and a multi-interactions mechanism at all operating temperatures. The density of MIL-101(Fe) active sites (DM = 77.33-52.38 mg/g for MB and 149.91-107.07 for MO) and the total adsorbed dye layers (Nt = 3.12-2.49 for MB and 5.36-3.67 for MO) resulted in improving the adsorption capacities of MO dye. The adsorption energies ranged from 8.89 to 33.73 kJ/mol and they displayed that MO and MB uptake processes were exothermic controlled by physical interactions at all temperatures. Regeneration results indicated that this adsorbent can be reutilized without a significant loss in its removal efficiency after five adsorption-desorption cycles. Overall, the adsorption capacity, chemical stability, and regeneration performance of MIL-101(Fe) support its application as a very promising adsorbent for the removal of organic hazardous pollutants from water.

Keywords: Adsorption mechanism; Advanced modeling; MIL-101(Fe); Methyl orange; Methylene blue.

MeSH terms

  • Adsorption
  • Coloring Agents / chemistry
  • Metal-Organic Frameworks* / chemistry
  • Methylene Blue / chemistry
  • Water Pollutants, Chemical* / analysis

Substances

  • Coloring Agents
  • MIL-101
  • Metal-Organic Frameworks
  • Water Pollutants, Chemical
  • Methylene Blue