Synergistic Silencing of Skp2 by siRNA Self-Assembled Nanoparticles as a Therapeutic Strategy for Advanced Prostate Cancer

Small. 2022 Apr;18(14):e2106046. doi: 10.1002/smll.202106046. Epub 2022 Feb 19.

Abstract

Advanced prostate cancer, harboring multiple mutations of tumor suppressor genes, is refractory to conventional therapies. Knockout of the Skp2 gene blocks pRb/p53 doubly deficient prostate cancer in mice, which inspired the authors to develop an approach for delivering siRNA that would efficiently silence Skp2 (siSkp2) in vivo. Here, a facile strategy is reported to directly assemble siSkp2 with the natural compound quercetin (Que) into supramolecular nanoparticles (NPs). This carrier-free siSkp2 delivery system could effectively protect siSkp2 from degradation in serum and enhance its cellular internalization. Furthermore, the siSkp2/Que NPs exhibit synergistic effects in Skp2 silencing, because they can degrade the mRNA and protein of Skp2 simultaneously. Indeed, siSkp2/Que NPs remarkably diminish the Skp2 abundance and further inhibit the proliferation and migration of TMU cells (RB1/TP53/KRAS triple mutations) in vitro. The in vivo results further show that i.v. administration of siSkp2/Que NPs efficiently accumulates in tumor sites and strongly inhibits the growth of TMU tumors in nude mice. Importantly, the siSkp2/Que NPs do not induce any abnormality in the treated mice, which suggests satisfactory biocompatibility. Collectively, this study describes a tractable siRNA self-assembled strategy for Skp2 silencing, which might be a promising nanodrug to cure multitherapy-resistant advanced prostate cancer.

Keywords: Skp2; advanced prostate cancer; nanodrugs; self-assembly; siRNA delivery.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Humans
  • Male
  • Mice
  • Mice, Knockout
  • Mice, Nude
  • Nanoparticles*
  • Prostatic Neoplasms* / drug therapy
  • Prostatic Neoplasms* / genetics
  • RNA, Small Interfering / genetics

Substances

  • RNA, Small Interfering