Modeling and ex vivo experimental validation of liver tissue carbonization with laser ablation

Comput Methods Programs Biomed. 2022 Apr:217:106697. doi: 10.1016/j.cmpb.2022.106697. Epub 2022 Feb 10.

Abstract

Objective: The purpose of this study was to model the process of liver tissue carbonization with laser ablation (LA).

Methods: A dynamic heat source model was proposed and combined with the light distribution model as well as bioheat transfer model to predict the development of tissue carbonization with laser ablation (LA) using an ex vivo porcine liver tissue model. An ex vivo laser ablation experiment with porcine liver tissues using a custom-made 1064 nm bare fiber was then used to verify the simulation results at 3, 5, and 7 W laser administrations for 5 min. The spatiotemporal temperature distribution was monitored by measuring the temperature changes at three points close the fiber during LA. Both the experiment and simulation of the temperature, tissue carbonization zone, and ablation zone were then compared.

Results: Four stages were recognized in the development of liver tissue carbonization during LA. The growth of the carbonization zone along the fiber axial and radial directions were different in the four stages. The carbonization zone along the fiber axial direction (L2) grew in the four stages with a sharp increase in the initial period and a minor increase in Stage 4. However, the change in the carbonization zone along the fiber radial direction (D2) increased dramatically (Stage 1) to a long-time plateau (Stages 2 and 3) followed by a slow growth in Stage 4. An acceptable agreement between the computer simulation and ex vivo experiment in the temperature changes at the three points was found at all three testing laser administrations. A similar result was also obtained for the dimensions of coagulation zone and ablation zone between the computer simulation and ex vivo experiment (carbonization zone: 2.99± 0.10 vs. 2.78 mm2, 67.39± 0.09 vs. 63.53 mm2, and 90.53± 0.11 vs. 85.15 mm2; ablation zone: 68.95± 0.28 vs. 65.29 mm2, 182.11± 0.24 vs. 213.81 mm2, and 244.80± 0.06 vs. 251.79 mm2 at 3, 5, and 7 W, respectively).

Conclusion: This study demonstrates that the proposed dynamic heat source model combined with the light distribution model as well as bioheat transfer model can predict the development of liver tissue carbonization with an acceptable accuracy. This study contributes to an improved understanding of the LA process in the treatment of liver tumors.

Keywords: Laser ablation; Liver tissue; Mathematical modeling; Monte Carlo simulation; Tissue carbonization.

MeSH terms

  • Animals
  • Computer Simulation
  • Hot Temperature
  • Laser Therapy* / methods
  • Lasers
  • Liver / surgery
  • Swine