Silicon enhanced the resistance of Chinese cabbage (Brassica rapa L. ssp. pekinensis) to ofloxacin on the growth, photosynthetic characteristics and antioxidant system

Plant Physiol Biochem. 2022 Mar 15:175:44-57. doi: 10.1016/j.plaphy.2022.02.010. Epub 2022 Feb 12.

Abstract

The negative impact of the misuse of antibiotics on agriculture and human health has become a popular research topic with the increasing usage of antibiotics; however, little information is available about the mechanisms of OFL (ofloxacin) and Si (silicon). In this experiment, we applied 7 OFL concentrations to two Chinese cabbage cultivars (Qinghua and Biyu) to screen proper OFL concentrations. OFL concentrations of 0, 1, 2.5 and 5 mg L-1 were selected for the subsequent test and 1.2 mmol L-1 Si was used as mitigation. The results showed that Biyu suffered more damage than Qinghua and the injury degree increased in a concentration-dependent manner. With increasing OFL concentrations, the photosynthetic fluorescence was weakened significantly; under 1, 2.5 and 5 mg L-1 OFL, the Pn reduced by 5.35%, 35.92% and 43.62% in Qinghua and 33.98%, 41.94% and 64.66% in Biyu, respectively. The production rate of O2-, H2O2 and the MDA content were increased and Biyu appeared higher increase rates. In addition, the antioxidant enzymes contents first increased and then decreased and that of Qinghua increased more than Biyu. Si ensured the growth under OFL and protected its photosynthetic ability. Under the OFL1+Si, OFL2.5 + Si and OFL5+Si treatments, Pn increased by 3.91%, 15.95 and 15.69% in Qinghua and 28.82%, 20.40% and 39.01% in Biyu. Si also maintained the structural integrity of leaf organelles and improved the scavenging ability of ROS by increasing the activity and relative gene expression of antioxidant enzymes. Moreover, varietal differences may play a more important role than Si.

Keywords: Antioxidant system; Chinese cabbage; Ofloxacin; Photosynthetic characteristics; ROS accumulation; Silicon.