A Convenient Procedure for Preparing BiOX-TiO2 Photoelectrocatalytic Electrodes from a Titanium-Oxo Compound-Modified Carbon Fiber Cloth

Inorg Chem. 2022 Mar 7;61(9):4024-4032. doi: 10.1021/acs.inorgchem.1c03779. Epub 2022 Feb 18.

Abstract

Photoelectrocatalysis (PEC) has shown great advantages in sustainable organic synthesis and wastewater treatment because the PEC process can minimize electron-hole recombination, thereby improving the photocatalytic performance. Here, we report a convenient procedure for preparing immobilized BiOX-TiO2 photoelectrocatalytic electrodes from a titanium-oxo compound (TOC)-modified carbon fiber cloth (CFC). Crystalline TOCs composed of Ti12 cations and bismuth halide anions, [Ti12O14(OiPr)18][Bi3Br11(THF)2] (1) and [Ti12O14(OiPr)18][Bi4I14(THF)2] (2), were grown on CFC. Taking advantage of the easy hydrolysis of the titanium-oxo cation and bismuth halide anion, we could easily transform these CFC-immobilized crystals into BiOX-TiO2/CFC (X = Br or I) photocatalysts, which facilitates recycling of the catalysts. The photocatalytic dye degradation test showed that the efficiency did not decrease obviously after 10 photocatalytic cycles. Using BiOX-TiO2-modified CFC as electrodes, electrocatalysis (EC), photocatalysis (PC), and PEC were examined. PEC showed an attractive synergistic effect of EC and PC. These TOC-modified CFCs would be potential candidates for catalytic electrodes for sustainable wastewater purification.