Effects of slag and biochar amendments on microorganisms and fractions of soil organic carbon during flooding in a paddy field after two years in southeastern China

Sci Total Environ. 2022 Jun 10:824:153783. doi: 10.1016/j.scitotenv.2022.153783. Epub 2022 Feb 14.

Abstract

Incorporating amendments of industrial waste such as biochar and steel slag in cropland has been used to enhance the storage of soil organic carbon (SOC) while sustaining crop production. Short-term laboratory and field studies have identified important influences of biochar on active SOC fractions associated with soil microbial activity in paddy soils, but the long-term effects remain poorly understood. To address these knowledge gaps, we examined the effects of slag, biochar, and slag+biochar treatments on total SOC concentration, active SOC fractions and soil microbial communities in a paddy field two years after incorporation. Across both two seasons, the addition of slag, biochar, slag+biochar increased soil salinity by 26-80%, 1.3-37% and 42-79%, and also increased soil pH by 0.8-5.7%, 2.1-2.4% and 4.0-6.3%, respectively, relative to the control. SOC concentration was higher in the slag, biochar, and slag+biochar treatments across both rice seasons by 4.3-5%, 0.5-17% and 4.3-7%, respectively. Soil C-pool activity and C-pool management indices in the late paddy season were significantly lower in the slag+biochar treatment than the control by 26.3 and 21.3%, respectively, indicating that the amendments contributed to the stability of SOC. The C concentrations of the biochar and slag amendments affected bacterial abundance more than fungal abundance and affected C cycling. Our study suggests that combined slag and biochar amendments may increase bacterial abundance that may maintain SOC storage and reduce the abundances of potential SOC decomposers in key functional genera, indicating strong coupling relationships with changes of soil properties such as salinity, pH, and SOC concentration. These outcomes due to the amendments (e.g. slag+biochar) may increase microbial C-use efficiency and support the stability of active SOC fractions, with opportunities for long-term C sequestration.

Keywords: Carbon pool management index; Fungal abundance; Soil carbon sequestration; Soil organic carbon fractions; bacteria abundance.

MeSH terms

  • Carbon
  • Charcoal / chemistry
  • China
  • Oryza*
  • Soil* / chemistry

Substances

  • Soil
  • biochar
  • Charcoal
  • Carbon