Folded Propeller Chiral Structures Exclusively Adaptive to Chloroform

ACS Nano. 2022 Mar 22;16(3):4551-4559. doi: 10.1021/acsnano.1c11057. Epub 2022 Feb 17.

Abstract

Intramolecular folding is a strategy to construct aryl chiral compounds with applications in chiroptical materials and asymmetrical catalysts. However, beyond polarity the role of solvent in controlling the folded chirality is ambiguous. Here, we report a simple folding protocol to build chiral benzimidazole skeleton with propeller chirality, which could be adaptive to chloroform (CHCl3) with high selectivity. Benzimidazole conjugated with diamino acid arms underwent folding driven by hydrogen bonds, exhibiting propeller chirality of which handedness could be tuned by the absolute chirality of amino acids. Reversible unfolding/folding behavior was realized by heating/cooling process, giving rise to the thermomediated chiroptical switch. Among up to 32 common solvents, chloroform exclusively inverted the propeller chirality. The geometry and hydrogen bonding sites of chloroform allow rearrangement of diamino acid arms into an opposite packing propensity. The chloroform behaves as an invasive linker between diamino acid arms to replace the pristine hydrogen bonds. This work reports the fabrication of chiral aryl compounds by simple folding, which shows the adaptiveness to the chloroform. It demonstrates that not only polarity but also the active participation of solvent could change the chirality and optical activities of small folded molecules.

Keywords: adaptiveness; chirality; circularly polarized luminescence; folded structure; solvent.