Sonogashira Synthesis of New Porous Aromatic Framework-Entrapped Palladium Nanoparticles as Heterogeneous Catalysts for Suzuki-Miyaura Cross-Coupling

ACS Appl Mater Interfaces. 2022 Mar 2;14(8):10428-10437. doi: 10.1021/acsami.1c24429. Epub 2022 Feb 16.

Abstract

Palladium nanoparticles entrapped in porous aromatic frameworks (PAFs) or covalent organic frameworks may promote heterogeneous catalytic reactions. However, preparing such materials as active nanocatalysts usually requires additional steps for palladium entrapment and reduction. This paper reports as a new approach, a simple procedure leading to the self-entrapment of Pd nanoparticles within the PAF structure. Thus, the selected Sonogashira synthesis affords PAF-entrapped Pd nanoparticles that can catalyze the C-C Suzuki-Miyaura cross-coupling reactions. Following this new concept, PAFs were synthesized via Sonogashira cross-coupling of the tetraiodurated derivative of tetraphenyladamantane or spiro-9,9'-bifluorene with 1,6-diethynylpyrene, then characterized them using powder X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy, X-ray photoelectron spectroscopy, high-resolution scanning transmission electron microscopy, and textural properties (i.e., adsorption-desorption isotherms). The PAF-entrapped Pd nanocatalysts showed high catalytic activity in Suzuki-Miyaura coupling reactions (demonstrated by preserving the turnover frequency values) and stability (demonstrated by palladium leaching and recycling experiments). This new approach presents a new class of PAFs with unique structural, topological, and compositional complexities as entrapped metal nanocatalysts or for other diverse applications.

Keywords: 1,6-diethynylpyrene; STEM characterization of PAFs; Sonogashira synthesis of PAFs; Suzuki−Miyaura cross-coupling; heterogeneous catalysts; spiro-9,9′-bifluorene; tetraphenyladamantane-based PAFs.