Preparation and Characterization of Polylactic Acid/Bamboo Fiber Composites

ACS Appl Bio Mater. 2022 Mar 21;5(3):1038-1046. doi: 10.1021/acsabm.1c01082. Epub 2022 Feb 16.

Abstract

The development of green and renewable materials has attracted increasing attention in recent years. Hence, biocomposite-based packaging materials have been investigated to replace petrochemical materials in several industries, such as the food packaging and electronics packaging industries. The tensile and thermal properties of biocomposite-based packaging materials composed of polylactic acid and plant fiber were mainly investigated in the current literature, but fewer studies on the improvement of water resistance and water vapor/oxygen barrier properties of composite materials were performed. Herein, we describe a composite film comprising TBFP [a mixture of bamboo fiber powder (BFP) and silica aerogel powder] that was combined with modified polylactic acid (MPLA) in a melt-mixing process. The structure, morphology, tensile strength, thermal properties, water absorption properties, water vapor/oxygen barrier effect, cytocompatibility, and biodegradability of the composites were characterized. MPLA and TBFP improved the properties of these composites. Fourier transform infrared and X-ray diffraction spectra have shown interfacial adhesion of MPLA/TBFP, resulting in a tighter structure. Hence, the MPLA/TBFP composite had higher elongation at failure (ε), tensile strength at failure (δ), Young's modulus (E), initial decomposition temperature at 5 wt % loss (T5%), residual yields, oxygen transmission rate, contact angles, lower thermal conductivity (k) values, water vapor transmission rate, and water absorption and biodegradability compared with PLA and PLA/BFP. It indicates that the MPLA/TBFP composites exhibited more favorable tensile strength, water resistance, and water vapor/oxygen barrier than the PLA and PLA/BFP composites. Cell growth analysis showed that the MPLA/TBFP and PLA/BFP composites own good cytocompatibility. Moreover, the biodegradability of the PLA/BFP and MPLA/TBFP composites increased with the filler (BFP or TBFP) concentration. Because of these improvements in their properties, composites can be used as packing materials in many perspectives.

Keywords: bamboo fiber; barrier properties; biodegradability; polylactic acid; tensile properties.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Dietary Fiber
  • Oxygen
  • Polyesters* / chemistry
  • Powders
  • Steam*

Substances

  • Dietary Fiber
  • Polyesters
  • Powders
  • Steam
  • poly(lactide)
  • Oxygen