Low cost, robust, environmentally friendly, wood supported 3D-hierarchical Cu3SnS4 for efficient solar powered steam generation

J Colloid Interface Sci. 2022 Jun:615:707-715. doi: 10.1016/j.jcis.2022.02.012. Epub 2022 Feb 7.

Abstract

Solar steam generation has great potential in alleviating freshwater crises, particularly in regions with accessible seawater and abundant insolation. Inexpensive, efficient, and eco-friendly photothermal materials are desired to fabricate sunlight-driven evaporation devices. Here, we have designed an economical strategy to fabricate a high-performance wood-based solar steam generation device. In current study, 3D-hierarchical Cu3SnS4 has been loaded on wood substrates of variable sizes via an in-situ solvothermal method. Considering the water transportation capacity and thermal insulation property of wood, an enhanced light absorption was achieved by a uniform coating of Cu3SnS4 on the inside and outside of the 3D porous structure of the wood. Thanks for the synergistic effect of Cu3SnS4 and wood substrate, the obtained composite endorsed high-performance solar steam generation with a steam generation efficiency of 90% and an evaporation rate as high as 1.35 kg m-2h-1 under one sun.

Keywords: High evaporation rate; In-situ solvothermal coating; Solar steam generation device; Ternary chalcogenide Cu(3)SnS(4); Wood substrate.

MeSH terms

  • Solar Energy*
  • Steam
  • Sunlight
  • Water Purification* / methods
  • Wood

Substances

  • Steam