Identification of Social Engagement Indicators Associated With Autism Spectrum Disorder Using a Game-Based Mobile App: Comparative Study of Gaze Fixation and Visual Scanning Methods

J Med Internet Res. 2022 Feb 15;24(2):e31830. doi: 10.2196/31830.

Abstract

Background: Autism spectrum disorder (ASD) is a widespread neurodevelopmental condition with a range of potential causes and symptoms. Standard diagnostic mechanisms for ASD, which involve lengthy parent questionnaires and clinical observation, often result in long waiting times for results. Recent advances in computer vision and mobile technology hold potential for speeding up the diagnostic process by enabling computational analysis of behavioral and social impairments from home videos. Such techniques can improve objectivity and contribute quantitatively to the diagnostic process.

Objective: In this work, we evaluate whether home videos collected from a game-based mobile app can be used to provide diagnostic insights into ASD. To the best of our knowledge, this is the first study attempting to identify potential social indicators of ASD from mobile phone videos without the use of eye-tracking hardware, manual annotations, and structured scenarios or clinical environments.

Methods: Here, we used a mobile health app to collect over 11 hours of video footage depicting 95 children engaged in gameplay in a natural home environment. We used automated data set annotations to analyze two social indicators that have previously been shown to differ between children with ASD and their neurotypical (NT) peers: (1) gaze fixation patterns, which represent regions of an individual's visual focus and (2) visual scanning methods, which refer to the ways in which individuals scan their surrounding environment. We compared the gaze fixation and visual scanning methods used by children during a 90-second gameplay video to identify statistically significant differences between the 2 cohorts; we then trained a long short-term memory (LSTM) neural network to determine if gaze indicators could be predictive of ASD.

Results: Our results show that gaze fixation patterns differ between the 2 cohorts; specifically, we could identify 1 statistically significant region of fixation (P<.001). In addition, we also demonstrate that there are unique visual scanning patterns that exist for individuals with ASD when compared to NT children (P<.001). A deep learning model trained on coarse gaze fixation annotations demonstrates mild predictive power in identifying ASD.

Conclusions: Ultimately, our study demonstrates that heterogeneous video data sets collected from mobile devices hold potential for quantifying visual patterns and providing insights into ASD. We show the importance of automated labeling techniques in generating large-scale data sets while simultaneously preserving the privacy of participants, and we demonstrate that specific social engagement indicators associated with ASD can be identified and characterized using such data.

Keywords: app; autism; autism spectrum disorder; computer vision; diagnostic; engagement; gaming; gaze; insight; mobile diagnostics; mobile health; pattern; pattern recognition; social phenotyping; video; vision.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Autism Spectrum Disorder* / diagnosis
  • Child
  • Computers, Handheld
  • Fixation, Ocular
  • Humans
  • Mobile Applications*
  • Social Participation