Chemical Composition and Metabolomic Analysis of Amaranthus cruentus Grains Harvested at Different Stages

Molecules. 2022 Jan 19;27(3):623. doi: 10.3390/molecules27030623.

Abstract

This study aimed at investigating the impact of early versus normal grain harvesting on the chemical composition and secondary metabolites of Amaranthus cruentus species grown in South Africa. Mature harvested grain had higher (p < 0.05) DM, CF, NDF and ADF content compared to prematurely harvested grain. There were no significant (p > 0.05) differences between CP, ADL and GE of premature and mature harvested grains. Mature harvesting resulted in higher grain Ca, P, Mg and K content. Essential amino acids spectrum and content remained similar regardless of maturity at harvest. The grains displayed an ample amount of unsaturated fatty acids; the highest percentage was linoleic acid: 38.75% and 39.74% in premature and mature grains, respectively. β-Tocotrienol was detected at 5.92 and 9.67 mg/kg in premature and mature grains, respectively. The lowest was δ-tocotrienol which was 0.01 and 0.54 mg/kg in premature and mature grains, respectively. Mature harvested grain had a higher secondary metabolite content compared to premature harvested grains. The results suggest that mature harvested Amaranthus cruentus grain contain more minerals and phytochemicals that have health benefits for human and livestock immunity and gut function, which ultimately improves performance. This study concludes that A. cruentus grown in South Africa is a potential alternative cereal to major conventional cereals.

Keywords: alternative grains; amaranth; chemical composition; harvest stage; nutrition.

MeSH terms

  • Amaranthus* / chemistry
  • Edible Grain / chemistry
  • Humans
  • Metabolomics
  • Minerals / analysis
  • Plant Structures / chemistry

Substances

  • Minerals