A Consortium Blockchain-Based Secure and Trusted Electronic Portfolio Management Scheme

Sensors (Basel). 2022 Feb 8;22(3):1271. doi: 10.3390/s22031271.

Abstract

In recent times, electronic portfolios (e-portfolios) are being increasingly used by students and lifelong learners as digital online multimedia résumés that showcase their skill sets and achievements. E-portfolios require secure, reliable, and privacy-preserving credential issuance and verification mechanisms to prove learning achievements. However, existing systems provide private institution-wide centralized solutions that primarily rely on trusted third parties to issue and verify credentials. Furthermore, they do not enable learners to own, control, and share their e-portfolio information across organizations, which increases the risk of forged and fraudulent credentials. Therefore, we propose a consortium blockchain-based e-portfolio management scheme that is decentralized, secure, and trustworthy. Smart contracts are leveraged to enable learners to completely own, publish, and manage their e-portfolios, and also enable potential employers to verify e-portfolio credentials and artifacts without relying on trusted third parties. Blockchain is used as an immutable distributed ledger that records all transactions and logs for tamper-proof trusted data provenance, accountability, and traceability. This system guarantees the authenticity and integrity of user credentials and e-portfolio data. Decentralized identifiers and verifiable credentials are used for user profile identification, authentication, and authorization, whereas verifiable claims are used for e-portfolio credential proof authentication and verification. We have designed and implemented a prototype of the proposed scheme using a Quorum consortium blockchain network. Based on the evaluations, our solution is feasible, secure, and privacy-preserving. It offers excellent performance.

Keywords: consortium blockchain; decentralized identifier (DID); e-portfolio management system; smart contract; verifiable credentials (VC).

MeSH terms

  • Blockchain*
  • Electronics
  • Humans
  • Privacy