An 11.8-fJ/Conversion-Step Noise Shaping SAR ADC with Embedded Passive Gain for Energy-Efficient IoT Sensors

Sensors (Basel). 2022 Jan 24;22(3):869. doi: 10.3390/s22030869.

Abstract

Herein, we present a noise shaping successive-approximation-register (SAR) analog-to-digital converter (ADC) with an embedded passive gain multiplication technique. The noise shaping moves the in-band quantization noise from the signal band to out-of-band for improved signal-to-noise ratio (SNR). The proposed approach tackles the drawback of the previous active noise shaping (increased power and extra noise) and passive noise shaping (limited noise suppression and signal loss). Both noise shaping and gain multiplication are realized on-chip in an energy-efficient manner without an opamp. This approach uses only capacitors and switches in the finite impulse response (FIR) and infinite impulse response (IIR) filters. A comparator suppressing kickback noise is presented to handle the tradeoff between noise suppression and the filter capacitor size. The energy-efficient merged-capacitor switching (MCS) technique is effectively combined with rail-to-rail swing comparator and thermometer-coded capacitor array, which reduces the settling error in the digital to analog converter (DAC). The process-induced mismatch effect in the capacitive DAC is investigated using a behavioral model of the ADC. Additionally, we propose dynamic element matching (DEM) for the thermometer-coded capacitor array. The ADC is fabricated using a 0.18 μm CMOS process in an area of 0.26 mm2. Consuming 4.1 μW, the ADC achieves a signal-to-noise and distortion ratio (SNDR) of 66.5 dB and a spurious-free dynamic range (SFDR) of 79.1 dB. The figure-of-merit (FoM) of the ADC is 11.8 fJ/conversion-step.

Keywords: analog-to-digital converter; charge pump; noise shaping; signal-to-noise; successive approximation register.