Magnetoelastic Sensor Optimization for Improving Mass Monitoring

Sensors (Basel). 2022 Jan 22;22(3):827. doi: 10.3390/s22030827.

Abstract

Magnetoelastic sensors, typically made of magnetostrictive and magnetically-soft materials, can be fabricated from commercially available materials into a variety of shapes and sizes for their intended applications. Since these sensors are wirelessly interrogated via magnetic fields, they are good candidates for use in both research and industry, where detection of environmental parameters in closed and controlled systems is necessary. Common applications for these sensors include the investigation of physical, chemical, and biological parameters based on changes in mass loading at the sensor surface which affect the sensor's behavior at resonance. To improve the performance of these sensors, optimization of sensor geometry, size, and detection conditions are critical to increasing their mass sensitivity and detectible range. This work focuses on investigating how the geometry of the sensor influences its resonance spectrum, including the sensor's shape, size, and aspect ratio. In addition to these factors, heterogeneity in resonance magnitude was mapped for the sensor surface and the effect of the magnetic bias field strength on the resonance spectrum was investigated. Analysis of the results indicates that the shape of the sensor has a strong influence on the emergent resonant modes. Reducing the size of the sensor decreased the sensor's magnitude of resonance. The aspect ratio of the sensor, along with the bias field strength, was also observed to affect the magnitude of the signal; over or under biasing and aspect ratio extremes were observed to decrease the magnitude of resonance, indicating that these parameters can be optimized for a given shape and size of magnetoelastic sensor.

Keywords: geometry; magnetoelastic; magnetostrictive; mass; monitoring; resonance; sensor; wireless.

MeSH terms

  • Biosensing Techniques*