An Accessible Integrated Nanoparticle in a Metallic Hole Structure for Efficient Plasmonic Applications

Materials (Basel). 2022 Jan 21;15(3):792. doi: 10.3390/ma15030792.

Abstract

Addressing the severe deterioration of gap mode properties in spherical-shaped nanoparticles (NPs) becomes necessary due to their utilization in a wide range of multi-disciplinary applications. In this work, we report an integrated plasmonic nanostructure based on a spherical-shaped nanoparticle (NP) in a metallic hole as an alternative to a NP-only structure. With the help of three-dimensional (3D) electromagnetic simulations, we reveal that when a NP is positioned on the top of a metallic hole, it can exhibit superior gap-mode-based local-field intensity enhancement. The integrated nanostructure displayed a ~22-times increase in near-field enhancement characteristics, similar to cube- or disk-shaped nanostructure's plasmonic properties. From an experimental perspective, the NP positioning on top of the metallic hole can be realized more easily, facilitating a simple fabrication meriting our design approach. In addition to the above advantages, a good geometrical tolerance (metallic hole-gap size error of ~20 nm) supported by gap mode characteristics enhances flexibility in fabrication. These combined advantages from an integrated plasmonic nanostructure can resolve spherical-shaped NP disadvantages as an individual nanostructure and enhance its utilization in multi-disciplinary applications.

Keywords: gap-mode enhancement; integrated nanostructure; optics; plasmonics; simulations.