CeO2-Promoted PtSn/SiO2 as a High-Performance Catalyst for the Oxidative Dehydrogenation of Propane with Carbon Dioxide

Nanomaterials (Basel). 2022 Jan 27;12(3):417. doi: 10.3390/nano12030417.

Abstract

The oxidative dehydrogenation of propane with CO2 (CO2-ODP) has been extensively investigated as a promising green technology for the efficient production of propylene, but the lack of a high-performance catalyst is still one of the main challenges for its industrial application. In this work, an efficient catalyst for CO2-ODP was developed by adding CeO2 to PtSn/SiO2 as a promoter via the simple impregnation method. Reaction results indicate that the addition of CeO2 significantly improved the catalytic activity and propylene selectivity of the PtSn/SiO2 catalyst, and the highest space-time yield of 1.75 g(C3H6)·g(catalyst)-1·h-1 was achieved over PtSn/SiO2 with a Ce loading of 6 wt%. The correlation of the reaction results with the characterization data reveals that the introduction of CeO2 into PtSn/SiO2 not only improved the Pt dispersion but also regulated the interaction between Pt and Sn species. Thus, the essential reason for the promotional effect of CeO2 on CO2-ODP performance was rationally ascribed to the enhanced adsorption of propane and CO2 originating from the rich oxygen defects of CeO2. These important understandings are applicable in further screening of promoters for the development of a high-performance Pt-based catalyst for CO2-ODP.

Keywords: carbon dioxide; ceria; oxidative dehydrogenation; propane; supported PtSn catalyst.