Advancement of Fluorescent and Structural Properties of Bovine Serum Albumin-Gold Bioconjugates in Normal and Heavy Water with pH Conditioning and Ageing

Nanomaterials (Basel). 2022 Jan 25;12(3):390. doi: 10.3390/nano12030390.

Abstract

The red-emitting fluorescent properties of bovine serum albumin (BSA)-gold conjugates are commonly attributed to gold nanoclusters formed by metallic and ionized gold atoms, stabilized by the protein. Others argue that red fluorescence originates from gold cation-protein complexes instead, not gold nanoclusters. Our fluorescence and infrared spectroscopy, neutron, and X-ray small-angle scattering measurements show that the fluorescence and structural behavior of BSA-Au conjugates are different in normal and heavy water, strengthening the argument for the existence of loose ionic gold-protein complexes. The quantum yield for red-emitting luminescence is higher in heavy water (3.5%) than normal water (2.4%), emphasizing the impact of hydration effects. Changes in red luminescence are associated with the perturbations of BSA conformations and alterations to interatomic gold-sulfur and gold-oxygen interactions. The relative alignment of domains I and II, II and III, III and IV of BSA, determined from small-angle scattering measurements, indicate a loose ("expanded-like") structure at pH 12 (pD ~12); by contrast, at pH 7 (pD ~7), a more regular formation appears with an increased distance between the I and II domains, suggesting the localization of gold atoms in these regions.

Keywords: change in protein conformation; fluorescence; protein–gold conjugates; red-fluorescence; small angle X-ray scattering; small angle neutron scattering.