Nanoparticle-Induced Property Changes in Nematic Liquid Crystals

Nanomaterials (Basel). 2022 Jan 21;12(3):341. doi: 10.3390/nano12030341.

Abstract

Doping liquid crystals with nanoparticles is a widely accepted method to enhance liquid crystal's intrinsic properties. In this study, a quick and reliable method to characterise such colloidal suspensions using an optical multi-parameter analyser, a cross-polarised intensity measurement-based device, is presented. Suspensions characterised in this work are either plasmonic (azo-thiol gold AzoGNPs) or ferroelectric Sn2P2S6 (SPS) nanoparticles in nematic liquid crystals. The elastic constants and rotational viscosity showed nonlinear dependence on the concentration of AzoGNPs, initially increasing at lower concentrations and then decreasing at higher concentrations, indicating some degree of particle aggregation. For the SPS suspension, the elastic constant decreased with doping, while the rotational viscosity increased, in agreement with previous findings. Through viscosity measurements, the stability of SPS suspension over ten years is also highlighted.

Keywords: characterisation; colloidal suspension; elastic constants; liquid crystal; nanoparticles; optical multi-parameter analyser; rotational viscosity.