A bis(pyrazolyl)methane derivative against clinical Staphylococcus aureus strains isolated from otitis externa

Laryngoscope Investig Otolaryngol. 2022 Jan 18;7(1):283-290. doi: 10.1002/lio2.722. eCollection 2022 Feb.

Abstract

Objective: The purpose of this study was to evaluate the in vitro antibacterial effects of a p-Cymene-based bis(pyrazolyl)methane derivative (SC-19) to advance in developing alternative therapeutic compounds to fight against bacterial isolates from patients with otitis externa (OE).

Methods: Eighteen swab specimens were collected from patients aged over 18 years diagnosed with OE within at least 7 days of symptom onset, contaminated by only one bacterium type: Pseudomonas aeruginosa (n = 5); Staphylococcus aureus (n = 8); Klebsiella aerogenes (n = 2); Serratia marcescens (n = 1); Morganella morganii (n = 2). To appraise antibacterial activity, minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC), and minimum biofilm eradication concentration (MBEC) assays were run at different SC-19 concentrations.

Results: When using SC-19, S. aureus strains showed less bacterial growth, but no bactericidal effect was observed. The MIC and MBC of SC-19 were 62.5 and 2000 μg/ml against S. aureus and were >2000 μg/ml against the other isolates obtained from OE, respectively. In addition, the MBICs and MBECs of SC-19 against S. aureus were 125 and >2000 μg/ml, respectively.

Conclusion: Nowadays the acquired antibiotic resistance phenomenon has stimulated research into novel and more efficient therapeutic agents. Hence, we report that, helped by the structural diversity fostered herein by a range of bis(pyrazolyl)methane derivatives, SC-19 can be a promising alternative therapeutic option for treating OE caused by S. aureus given the observed effects on both planktonic state and biofilm.

Level of evidence: IV.

Keywords: Staphylococcus aureus; antibiotic resistance; bis(pyrazolyl)methane; infection; otitis externa.