Walking With Horizontal Head Turns Is Impaired in Persons With Early-Stage Multiple Sclerosis Showing Normal Locomotion

Front Neurol. 2022 Jan 28:12:821640. doi: 10.3389/fneur.2021.821640. eCollection 2021.

Abstract

Background: Turning the head while walking (an action often required during daily living) is particularly challenging to maintain balance. It can therefore potentially reveal subtle impairments in early-stage people with multiple sclerosis who still show normal locomotion (NW-PwMS). This would help in identifying those subjects who can benefit from early preventive exercise aimed at slowing the MS-related functional decline.

Objectives: To analyze if the assessment of walking with horizontal head turns (WHHT) through inertial sensors can discriminate between healthy subjects (HS) and NW-PwMS and between NW-PwMS subgroups. To assess if the discriminant ability of the instrumented WHHT is higher compared to clinical scores. To assess the concurrent validity of the sensor-based metrics.

Methods: In this multicenter study, 40 HS and 59 NW-PwMS [Expanded Disability Status Scale (EDSS) ≤ 2.5, disease duration ≤ 5 years] were tested. Participants executed Item-6 of the Fullerton Advanced Balance scale-short (FAB-s) wearing three inertial sensors on the trunk and ankles. The item required to horizontally turn the head at a beat of the metronome (100 bpm) while walking. Signals of the sensors were processed to compute spatiotemporal, regularity, symmetry, dynamic stability, and trunk sway metrics descriptive of WHHT.

Results: Mediolateral regularity, anteroposterior symmetry, and mediolateral stability were reduced in NW-PwMS vs. HS (p ≤ 0.001), and showed moderate discriminant ability (area under the receiver operator characteristic curve [AUC]: 0.71-0.73). AP symmetry and ML stability were reduced (p ≤ 0.026) in EDSS: 2-2.5 vs. EDSS: 0-1.5 subgroup (AUC: 0.69-0.70). The number of NW-PwMS showing at least one abnormal instrumented metric (68%) was larger (p ≤ 0.002) than the number of participants showing abnormal FAB-s-Item6 (32%) and FAB-s clinical scores (39%). EDSS: 2-2.5 subgroup included more individuals showing abnormal instrumented metrics (86%) compared to EDSS: 0-1.5 subgroup (57%). The instrumented metrics significantly correlated with FAB-s-Item6 and FAB-s scores (|Spearman's r s | ≥ 0.37, p < 0.001), thus demonstrating their concurrent validity.

Conclusion: The instrumented assessment of WHHT provided valid objective metrics that discriminated, with higher sensitivity than clinical scores, between HS and NW-PwMS and between EDSS subgroups. The method is a promising tool to complement clinical evaluation, and reveal subclinical impairments in persons who can benefit from early preventive rehabilitative interventions.

Keywords: dynamic balance; instrumented assessment; multiple sclerosis; rehabilitation outcome assessment; wearable inertial sensors.