Fatty acid nitroalkene reversal of established lung fibrosis

Redox Biol. 2022 Apr:50:102226. doi: 10.1016/j.redox.2021.102226. Epub 2021 Dec 29.

Abstract

Tissue fibrosis occurs in response to dysregulated metabolism, pro-inflammatory signaling and tissue repair reactions. For example, lungs exposed to environmental toxins, cancer therapies, chronic inflammation and other stimuli manifest a phenotypic shift to activated myofibroblasts and progressive and often irreversible lung tissue scarring. There are no therapies that stop or reverse fibrosis. The 2 FDA-approved anti-fibrotic drugs at best only slow the progression of fibrosis in humans. The present study was designed to test whether a small molecule electrophilic nitroalkene, nitro-oleic acid (NO2-OA), could reverse established pulmonary fibrosis induced by the intratracheal administration of bleomycin in C57BL/6 mice. After 14 d of bleomycin-induced fibrosis development in vivo, lungs were removed, sectioned and precision-cut lung slices (PCLS) from control and bleomycin-treated mice were cultured ex vivo for 4 d with either vehicle or NO2-OA (5 μM). Biochemical and morphological analyses showed that over a 4 d time frame, NO2-OA significantly inhibited pro-inflammatory mediator and growth factor expression and reversed key indices of fibrosis (hydroxyproline, collagen 1A1 and 3A1, fibronectin-1). Quantitative image analysis of PCLS immunohistology reinforced these observations, revealing that NO2-OA suppressed additional hallmarks of the fibrotic response, including alveolar epithelial cell loss, myofibroblast differentiation and proliferation, collagen and α-smooth muscle actin expression. NO2-OA also accelerated collagen degradation by resident macrophages. These effects occurred in the absence of the recognized NO2-OA modulation of circulating and migrating immune cell activation. Thus, small molecule nitroalkenes may be useful agents for reversing pathogenic fibrosis of lung and other organs.

Keywords: Electrophile; Fibrosis; Inflammation; Lung; Nitro-fatty acid; Nitroalkene.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Bleomycin / adverse effects
  • Fatty Acids* / therapeutic use
  • Fibrosis
  • Lung / pathology
  • Mice
  • Mice, Inbred C57BL
  • Pulmonary Fibrosis* / chemically induced
  • Pulmonary Fibrosis* / drug therapy
  • Pulmonary Fibrosis* / pathology

Substances

  • Fatty Acids
  • Bleomycin