Fully Printed Stretchable and Multifunctional E-Textiles for Aesthetic Wearable Electronic Systems

Small. 2022 Apr;18(13):e2107298. doi: 10.1002/smll.202107298. Epub 2022 Feb 11.

Abstract

Electronic textiles (e-textiles) that combine the wearing comfort of textiles and the functionality of soft electronics are highly demanded in wearable applications. However, fabricating robust high-performance stretchable e-textiles with good abrasion resistance and high-resolution aesthetic patterns for high-throughput manufacturing and practical applications remains challenging. Herein, the authors report a new multifunctional e-textile fabricated via screen printing of the water-based silver fractal dendrites conductive ink. The as-fabricated e-textiles spray-coated with the invisible waterproofing agent exhibit superior flexibility, water resistance, wearing comfort, air permeability, and abrasion resistance, achieving a low sheet resistance of 0.088 Ω sq-1 , high stretchability of up to 154%, and excellent dynamic stability for over 1000 cyclic testing (ε = 100%). The printed e-textiles can be explored as strain sensors and ultralow voltage-driven Joule heaters driven for personalized thermal management. They finally demonstrate an integrated aesthetic smart clothing made of their multifunctional e-textiles for human motion detection and body-temperature management. The printed e-textiles provide new opportunities for developing novel wearable electronics and smart clothing for future commercial applications.

Keywords: Joule heaters; conductive inks; printed e-textiles; strain sensors; wearable electronics.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Electric Conductivity
  • Electronics
  • Esthetics
  • Humans
  • Textiles
  • Wearable Electronic Devices*