Outcomes of great vessel debranching to facilitate thoracic endovascular aortic repair

J Vasc Surg. 2022 Jul;76(1):53-60.e1. doi: 10.1016/j.jvs.2022.01.127. Epub 2022 Feb 9.

Abstract

Objective: With the expanding application of endovascular technology, the need to deploy into zone 0 has been encountered on occasion. In the present study, we evaluated the outcomes of great vessel debranching (GVD) as a method of extending the proximal landing zone to facilitate thoracic endovascular aortic repair (TEVAR).

Methods: We performed a single-center retrospective review of all patients who had undergone GVD followed by TEVAR between May 2013 and December 2020. The primary outcome was primary patency of all targeted vessels, with all-cause perioperative mortality as a secondary outcome. Kaplan-Meier analysis was used to account for censoring of mortality and primary patency. The extent of hybrid aortic repairs was characterized into type I (GVD plus TEVAR without ascending aorta or aortic arch reconstruction, type II (GVD plus TEVAR with ascending aorta reconstruction), and type III (GVD plus TEVAR with ascending aorta and aortic arch reconstruction with an elephant trunk (soft [surgical] or frozen [endovascular]]).

Results: A total of 42 patients (23 men [54.8%]; mean age, 62.2 ± 11.2 years) had undergone GVD, with 122 vessels revascularized (42 innominate, 42 left common carotid, and 38 left subclavian arteries). The indication for TEVAR was aneurysmal degeneration from aortic dissection in 32 patients (76.2%), a thoracic aneurysm in 9 patients (21.4%), and a perforated aortic ulcer in 1 patient (2.4%). The median duration between GVD and TEVAR was 82 days. The mean follow-up period was 25.7 ± 23.5 months. Type I repair was performed in 4, type II in 16, and type III in 22 patients. The perioperative mortality, stroke, and paraplegia rates were 9.5%, 7.1%, and 2.4%, respectively. Neither the extent of repair (P = .80) nor a history of aortic repair (P = .90) was associated with early mortality. Of the 38 patients who had survived the perioperative period, 6 had died >30 days postoperatively. At 36 months, the survival estimate was 68.6% (95% confidence interval, 45.7%-83.4%). The overall primary patency of the innominate artery, left common carotid artery, and left subclavian artery was 100%, 89.5%, and 94.1%, respectively. The primary-assisted patency rate was 100% for all the vessels.

Conclusions: We found GVD to be a safe and effective method of extending the proximal landing zone into zone 0 with outstanding primary patency rates. Further studies are required to confirm the safety and longer term durability for these patients.

Keywords: Extent of hybrid aortic repair; Great vessel debranching; Supra-aortic trunk revascularization; TEVAR.

MeSH terms

  • Aged
  • Aorta, Thoracic / diagnostic imaging
  • Aorta, Thoracic / surgery
  • Aortic Aneurysm, Thoracic* / diagnostic imaging
  • Aortic Aneurysm, Thoracic* / surgery
  • Blood Vessel Prosthesis
  • Blood Vessel Prosthesis Implantation*
  • Endovascular Procedures*
  • Humans
  • Male
  • Middle Aged
  • Retrospective Studies
  • Stents
  • Treatment Outcome
  • Ulcer / surgery