A genome-wide screening of the 70 kDa heat shock protein (HSP70) genes in the rotifer Brachionus plicatilis sensu stricto with a characterization of two heat-inducible HSP70 genes

Cell Stress Chaperones. 2023 Sep;28(5):583-594. doi: 10.1007/s12192-022-01260-6. Epub 2022 Feb 11.

Abstract

The 70 kDa heat shock proteins (HSP70s) and the constitutive members of the HSP70 family (heat shock cognates; HSC70s) play essential roles in various biological processes. The number of hsp70/hsc70 in the database is rapidly increasing because of their importance and the automatic annotation of newly sequenced genomes. However, accumulating evidence indicates that neither hsp70 nor hsc70 forms a monophyletic gene family, raising the need to reconsider the annotation strategy based on the traditional concept of the inducible HSP70 and constitutive HSC70s. The main aim of this study is to establish a systematic scheme to annotate hsp70-like genes taking the latest phylogenetic insights into account. We cloned two hsp70s from the rotifer Brachionus plicatilis sensu stricto (s.s.), an emerging model in evolutionary genetics, and conducted a genome-wide screening of B. plicatilis s.s. hsp70s using the two sequences as queries. A total of 15 hsp70-like genes were found, and 7 of them encoded distant members of the HSP70 family, the function of which largely remains unknown. Eight canonical hsp70s were annotated according to a recently proposed nomenclature based on the molecular evolution: e.g., HSP70cA1/B1 for the cytosolic lineage, HSP70er1 for the endoplasmic reticulum lineage, and HSP70m1 for the mitochondrial lineage. The two cloned hsp70s, HSP70cB1 and HSP70cB2, ubiquitously increased their mRNA levels up to 7.5 times after heat treatment as assessed by semi-quantitative PCR, real-time PCR, and in situ hybridization. This systematic screening incorporating a reasonable update to the annotation strategy would provide a useful example for future HSP70 studies, especially those in non-traditional model organisms.

Keywords: Gene annotation; In situ hybridization; Molecular evolution; Nomenclature; Phylogenetic tree; Real-time PCR.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Base Sequence
  • Biological Evolution*
  • HSP70 Heat-Shock Proteins* / genetics
  • Heat-Shock Response
  • Phylogeny

Substances

  • HSP70 Heat-Shock Proteins