Anti-HK antibody reveals critical roles of a 20-residue HK region for Aβ-induced plasma contact system activation

Blood Adv. 2022 May 24;6(10):3090-3101. doi: 10.1182/bloodadvances.2021006612.

Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder and the leading cause of dementia. Vascular abnormalities and neuroinflammation play roles in AD pathogenesis. Plasma contact activation, which leads to fibrin clot formation and bradykinin release, is elevated in many AD patients, likely due to the ability of AD's pathogenic peptide β-amyloid (Aβ) to induce its activation. Since overactivation of this system may be deleterious to AD patients, the development of inhibitors could be beneficial. Here, we show that 3E8, an antibody against a 20-amino acid region in domain 6 of high molecular weight kininogen (HK), inhibits Aβ-induced intrinsic coagulation. Mechanistically, 3E8 inhibits contact system activation by blocking the binding of prekallikrein (PK) and factor XI (FXI) to HK, thereby preventing their activation and the continued activation of factor XII (FXII). The 3E8 antibody can also disassemble HK/PK and HK/FXI complexes in normal human plasma in the absence of a contact system activator due to its strong binding affinity for HK, indicating its prophylactic ability. Furthermore, the binding of Aβ to both FXII and HK is critical for Aβ-mediated contact system activation. These results suggest that a 20-amino acid region in domain 6 of HK plays a critical role in Aβ-induced contact system activation, and this region may provide an effective strategy to inhibit or prevent contact system activation in related disorders.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease*
  • Amino Acids
  • Antibodies
  • Factor XI / metabolism
  • Factor XII
  • Humans
  • Kininogen, High-Molecular-Weight* / metabolism
  • Prekallikrein / metabolism

Substances

  • Amino Acids
  • Antibodies
  • Kininogen, High-Molecular-Weight
  • Factor XII
  • Factor XI
  • Prekallikrein