Effect of the chitosan second layer on the gelation and controlled digestion of Citrem-chitosan bilayer emulsions

Food Funct. 2022 Mar 7;13(5):2515-2533. doi: 10.1039/d1fo02409d.

Abstract

This research aimed to induce repulsive gelation in Citrem-stabilized O/W emulsions by creating a secondary layer of chitosan around the droplets. A range of chitosan concentrations (0-0.25 wt%) and degrees of deacetylation (DDA 50% and 93%) were used to establish the conditions for repulsive gelation in 36 wt% O/W emulsion. The bilayer emulsions were prepared by the electrostatic deposition of positively charged chitosan on negatively charged Citrem-stabilized droplets at pH 4. The droplet size increased from <0.5 μm for the primary emulsion to 5-10 μm at an intermediate chitosan concentration (0.05-0.15 wt%) due to bridging flocculation and again dropped to 1.7-3.6 μm at higher concentrations (0.2 and 0.25 wt%). The droplet charge changed from -48 mV for the primary emulsion to +41.4 and +54.5 mV after surface saturation by DDA 50 and DDA 93 chitosan, respectively. The strain and frequency-dependent rheology indicated that with an increase in the chitosan concentration, emulsions changed from a viscoelastic liquid for monolayer emulsions to strong attractive gel due to bridging flocculation at an intermediate chitosan concentration. At a higher concentration, repulsive gels were formed at complete coverage due to an increase in the effective oil volume fraction towards close packing resulting from the expansion of the interfacial steric barrier and charge cloud thickness. The overall lipid digestibility during in vitro digestion was 25.7% for monolayer emulsions, which decreased with increased chitosan concentration and reached the lowest at surface saturation (17.5%). It was proposed that the formation of the Citrem-chitosan bilayer controlled lipid digestibility by delaying the action of gastric and pancreatic lipases. Such bilayer emulsion gels can be utilized for structure formation in reduced-fat foods.

MeSH terms

  • Chitosan / chemistry
  • Chitosan / metabolism*
  • Digestion / drug effects*
  • Emulsions / chemistry
  • Emulsions / metabolism*
  • Gels
  • Humans
  • Particle Size

Substances

  • Emulsions
  • Gels
  • Chitosan