Formation of Temporary Negative Ions and Their Subsequent Fragmentation upon Electron Attachment to CoQ0 and CoQ0 H2

Chemphyschem. 2022 Mar 4;23(5):e202100834. doi: 10.1002/cphc.202100834. Epub 2022 Feb 10.

Abstract

Ubiquinone molecules have a high biological relevance due to their action as electron carriers in the mitochondrial electron transport chain. Here, we studied the dissociative interaction of free electrons with CoQ0 , the smallest ubiquinone derivative with no isoprenyl units, and its fully reduced form, 2,3-dimethoxy-5-methylhydroquinone (CoQ0 H2 ), an ubiquinol derivative. The anionic products produced upon dissociative electron attachment (DEA) were detected by quadrupole mass spectrometry and studied theoretically through quantum chemical and electron scattering calculations. Despite the structural similarity of the two studied molecules, remarkably only a few DEA reactions are present for both compounds, such as abstraction of a neutral hydrogen atom or the release of a negatively charged methyl group. While the loss of a neutral methyl group represents the most abundant reaction observed in DEA to CoQ0 , this pathway is not observed for CoQ0 H2 . Instead, the loss of a neutral OH radical from the CoQ0 H2 temporary negative ion is observed as the most abundant reaction channel. Overall, this study gives insights into electron attachment properties of simple derivatives of more complex molecules found in biochemical pathways.

Keywords: dissociative electron attachment; electron carrier molecules; electron scattering; quantum chemistry; ubiquinone.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anions
  • Electrons*
  • Hydrogen* / chemistry
  • Ions

Substances

  • Anions
  • Ions
  • Hydrogen