Ruxolitinib Reduces Oxidative Stress in Patients With Primary Myelofibrosis: A Multicenter Study

Cureus. 2022 Jan 4;14(1):e20929. doi: 10.7759/cureus.20929. eCollection 2022 Jan.

Abstract

Introduction Primary myelofibrosis (PM) has a lower overall survival rate than other myeloproliferative neoplasms, and leukemic transformation is the most common cause of death. Increased oxidative stress has an important role in leukemic transformation in these patients. In this study, we aimed to find an answer to the question, "Could Ruxolitinib, which has been widely used in patients with myelofibrosis in recent years, have a role in reducing oxidative stress in these patients?". Methods A total of 106 patients with PM and 111 healthy volunteers were included in this study. We collected the serum samples of healthy volunteers and patients with myelofibrosis at the time of diagnosis and one month after the initiation of Ruxolitinib treatment. Ischemia modified albumin (IMA), native thiol, total thiol, and disulfide levels were studied. The disulfide/native thiol, disulfide/total thiol, and native thiol/total thiol ratios were calculated. Results IMA, native thiol, total thiol, disulfide levels, disulfide/native thiol, and disulfide/total thiol ratios at the time of diagnosis were significantly different in patients with myelofibrosis compared to the control group (p=0.001). Ruxolitinib significantly reduced oxidative stress when the measurements in the first month after Ruxolitinib were compared with those at the time of diagnosis (p=0.001). In patients with ASXL1 mutation, intermediate-2 risk, and high-risk according to the Dipps-plus score, the decrease in oxidative stress in the first month of treatment was more significant than at the time of diagnosis. Conclusion Ruxolitinib may be an effective treatment for reducing oxidative stress in patients with PM. The reduction in oxidative stress parameters with treatment in patients with ASXL1 mutation, intermediate-2, and high-risk patients was observed to be higher.

Keywords: disulfide; oxidative stress; primary myelofibrosis; ruxolitinib; thiol compounds.