Fluorescent Zn(II) frameworks with multicarboxylate and pyridyl N-donor ligands for sensing specific anions and organic molecules

Dalton Trans. 2022 Mar 1;51(9):3572-3580. doi: 10.1039/d1dt04052a.

Abstract

Three novel fluorescent Zn(II) frameworks, namely [Zn(DPA)(NDA)]2·2DMF (1), [Zn2(DPA)(OBA)2]·2DMF·4H2O (2) and [Zn(DPA)(HNTB)]·H2O (3) (DPA = 2,5-di(pyridin-4-yl)aniline, H2NDA = 1,4-naphthalenedicarboxylic acid, H2OBA = 4,4'-oxydibenzoic acid, H3NTB = 4,4',4''-nitrilotribenzoic acid, DMF = N,N-dimethylformamide), were successfully fabricated and structurally characterized. Due to the variety of organic linkers, 1-3 exhibit varied topologies: 1 is a 4-c three-dimensional (3D) framework with {65·8} topology, 2 is a 6-c 3D net with point symbol of {44·610·8}, and 3 is a 4-c two-dimensional network that further stacks into a 3D structure by hydrogen bonding interactions with {44·62} topology. Experiments related to fluorescence show that 1-3 can be utilized to quickly identify specific anions of CrO42-/Cr2O72-, and organic molecules such as 2,4,6-trinitrophenol and benzaldehyde.