14-3-3 Proteins are Potential Regulators of Liquid-Liquid Phase Separation

Cell Biochem Biophys. 2022 Jun;80(2):277-293. doi: 10.1007/s12013-022-01067-3. Epub 2022 Feb 10.

Abstract

The 14-3-3 family proteins are vital scaffold proteins that ubiquitously expressed in various tissues. They interact with numerous protein targets and mediate many cellular signaling pathways. The 14-3-3 binding motifs are often embedded in intrinsically disordered regions which are closely associated with liquid-liquid phase separation (LLPS). In the past ten years, LLPS has been observed for a variety of proteins and biological processes, indicating that LLPS plays a fundamental role in the formation of membraneless organelles and cellular condensates. While extensive investigations have been performed on 14-3-3 proteins, its involvement in LLPS is overlooked. To date, 14-3-3 proteins have not been reported to undergo LLPS alone or regulate LLPS of their binding partners. To reveal the potential involvement of 14-3-3 proteins in LLPS, in this review, we summarized the LLPS propensity of 14-3-3 binding partners and found that about one half of them may undergo LLPS spontaneously. We further analyzed the phase separation behavior of representative 14-3-3 binders and discussed how 14-3-3 proteins may be involved. By modulating the conformation and valence of interactions and recruiting other molecules, we speculate that 14-3-3 proteins can efficiently regulate the functions of their targets in the context of LLPS. Considering the critical roles of 14-3-3 proteins, there is an urgent need for investigating the involvement of 14-3-3 proteins in the phase separation process of their targets and the underling mechanisms.

Keywords: Condensate; Intrinsically disordered region; Protein–protein interaction; Regulation; Scaffold protein.

Publication types

  • Review

MeSH terms

  • 14-3-3 Proteins
  • Intrinsically Disordered Proteins* / chemistry

Substances

  • 14-3-3 Proteins
  • Intrinsically Disordered Proteins