Localized Excitonic Electroluminescence from Carbon Nanodots

J Phys Chem Lett. 2022 Feb 17;13(6):1587-1595. doi: 10.1021/acs.jpclett.1c04028. Epub 2022 Feb 9.

Abstract

Localized excitons are expected to achieve high-performance electroluminescence and have been widely investigated in GaN-based light-emitting diodes (LEDs). Although carbon nanodot (CD) based LEDs have been achieved with the radiative recombination of electrons and holes, localized excitonic electroluminescence has been not reported before. In this Letter, localized excitonic electroluminescent devices have been fabricated using fluorescent CDs as an active layer. The CDs show strong localized excitonic yellow emission with a fluorescence quantum yield of 76% and Stokes shift of 2.1 eV. The CD-based LEDs present a sub-bandgap turn-on voltage of 2.4 V and a maximum luminance of 60.2 cd m-2, which is the lowest driving voltage among the CD-based electroluminescent devices. Localized centers trap carriers effectively, resulting in sub-bandgap light emission. The current results manifest that localized excitons may furnish a promising approach to boost the development of CD-based LEDs.