Controllable Synthesis of a Loofah-Like Cobalt-Nickel Selenide Network as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction

ACS Appl Mater Interfaces. 2022 Feb 23;14(7):8963-8973. doi: 10.1021/acsami.1c21422. Epub 2022 Feb 9.

Abstract

The rational design and construction of noble metal-free electrocatalysts featuring high efficiency and low cost are important for the hydrogen evolution reaction (HER). A significant development in the synthesis of a loofah-like Co0.6Ni0.4Se2 architecture (expressed as Co0.6Ni0.4Se2-LN) electrocatalyst on carbon cloth through a three-step method is reported. Both the ionic liquid 1-dodecyl-3-methylimidazolium acetate (IL, [C12MIm]Ac) and the molar ratio of Co to Ni play a pivotal role in the synthesis of Co0.6Ni0.4Se2-LN with 3D hierarchical architecture. Co0.6Ni0.4Se2-LN exposes abundant active sites and provides hierarchical and stable transfer channels for both electrolyte ions and electrons, which results in outstanding HER performance. Impressively, Co0.6Ni0.4Se2-LN shows a low overpotential of 163 mV at 10 mA cm-2, a small Tafel slope of 40 mV dec-1, and superior stability to continuously catalyze the generation of H2 for 40 h. This study offers a new perspective to the synthesis of high-efficiency inexpensive electrocatalysts for HER and also presents a good example for investigating the potential application of ILs in the synthesis of functional materials.

Keywords: 3D hierarchical architectures; cobalt−nickel selenide; electrocatalysts; hydrogen evolution reaction; ionic liquids.