Chronic Wound Infection Model of Acinetobacter baumannii in Outbred Mice

Mil Med. 2022 Feb 4:usac020. doi: 10.1093/milmed/usac020. Online ahead of print.

Abstract

Introduction: We established a murine wound infection model with doxycycline treatment against multidrug-resistant Acinetobacter baumannii (AB5075) in Institute of Cancer Research (ICR) outbred mice.

Methods: Using three groups of neutropenic ICR mice, two full-thickness dorsal dermal wounds (6 mm diameter) were made on each mouse. In two groups, wounds were inoculated with 7.0 × 104 colony-forming units of AB5075. Of these two groups, one received a 6-day regimen of doxycycline while the other was sham treated with phosphate-buffered saline as placebo control. Another uninfected/untreated group served as a control. Wound closure, clinical symptoms, bacterial burden in wound beds and organs, and wound histology were investigated.

Results: Doxycycline-treated wounds completely healed by day 21, but untreated, infected wounds failed to heal. Compared to controls, wound infections without treatment resulted in significant reductions in body weight and higher bacterial loads in wound beds, lung, liver, and spleen by day 7. Histological evaluation of wounds on day 21 revealed ulcerated epidermis, muscle necrosis, and bacterial presence in untreated wounds, while wounds treated with doxycycline presented intact epidermis.

Conclusions: Compared to the previously developed BALB/c dermal wound model, this study demonstrates that the mouse strain selected impacts wound severity and resolution. Furthermore, this mouse model accommodates two dorsal wounds rather than only one. These variations offer investigators increased versatility when designing future studies of wound infection. In conclusion, ICR mice are a viable option as a model of dermal wound infection. They accommodate two simultaneous dorsal wounds, and upon infection, these wounds follow a different pattern of resolution compared to BALB/c mice.

Grants and funding