High-definition transcranial direct current stimulation enhances network segregation during spatial navigation in mild cognitive impairment

Cereb Cortex. 2022 Nov 9;32(22):5230-5241. doi: 10.1093/cercor/bhac010.

Abstract

Spatial navigation is essential for everyday life and relies on complex network-level interactions. Recent evidence suggests that transcranial direct current stimulation (tDCS) can influence the activity of large-scale functional brain networks. We characterized brain-wide changes in functional network segregation (i.e. the balance of within vs. between-network connectivity strength) induced by high-definition (HD) tDCS in older adults with mild cognitive impairment (MCI) during virtual spatial navigation. Twenty patients with MCI and 22 cognitively intact older adults (healthy controls-HC) underwent functional magnetic resonance imaging following two counterbalanced HD-tDCS sessions (one active, one sham) that targeted the right parietal cortex (center anode at P2) and delivered 2 mA for 20 min. Compared to HC, MCI patients showed lower brain-wide network segregation following sham HD-tDCS. However, following active HD-tDCS, MCI patients' network segregation increased to levels similar to those in HC, suggesting functional normalization. Follow-up analyses indicated that the increase in network segregation for MCI patients was driven by HD-tDCS effects on the "high-level"/association brain networks, in particular the dorsal-attention and default-mode networks. HD-tDCS over the right parietal cortex may normalize the segregation/integration balance of association networks during spatial navigation in MCI patients, highlighting its potential to restore brain activity in Alzheimer's disease.

Keywords: aging; functional connectivity; neuromodulation; restoration; transcranial electrical stimulation.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Aged
  • Brain / diagnostic imaging
  • Brain / physiology
  • Brain Mapping
  • Cognitive Dysfunction* / diagnostic imaging
  • Cognitive Dysfunction* / etiology
  • Cognitive Dysfunction* / therapy
  • Humans
  • Spatial Navigation*
  • Transcranial Direct Current Stimulation* / methods