Carbon emissions from land use in Jiangsu, China, and analysis of the regional interactions

Environ Sci Pollut Res Int. 2022 Jun;29(29):44523-44539. doi: 10.1007/s11356-022-19007-2. Epub 2022 Feb 8.

Abstract

Land carbon emissions are primarily determined by land use type, and these emissions could be transferred during interprovincial trade activities. This study took Jiangsu in China as a case, assigned all the energy-related carbon emissions to land, and analyzed the transferred land use carbon emissions through the application of a tele-coupling framework. Finally, the physical spatial distribution of transferred land use carbon emissions within Jiangsu at high resolution was simulated. China and Jiangsu emitted 2.27 × 109 t and 1.43 × 108 t of carbon in 2012, respectively, with industrial and mining land being the biggest emission source, generating more than 70% of their total emissions. Overall, Jiangsu's net carbon emissions transferred to other provinces was 2.41 × 106 t in urban land and 9.03 × 105 t in industrial and mining land, and these carbon emissions were mainly transferred to Hebei, Shandong, and Inner Mongolia. Land utilization intensity and economic development influenced the carbon emission transfer to some extent. Other provinces also transferred a large amount of carbon emissions to Jiangsu, of which 2.57 × 106 t was in urban land and 3.18 × 107 t was in industrial and mining land. Our simulation showed that the emissions in both land use types exhibited a south-north difference within Jiangsu; more specifically, urban land carbon emissions were mainly concentrated in core urban areas, especially in Suzhou, Wuxi, and Nanjing, whereas industrial and mining land carbon emissions were mostly distributed in the periphery of core urban areas and along the Yangtze River. To balance economic development and environment protection, the government must limit the expansion of construction land (especially industrial and mining land), and developed regions should implement various types of ecological compensation measures to help less developed regions reduce carbon embodied in trade activities.

Keywords: Carbon emission; China; Jiangsu; Land use; Spatial simulation; Tele-coupling.

MeSH terms

  • Carbon* / analysis
  • China
  • Economic Development
  • Industry
  • Rivers*

Substances

  • Carbon