Post-substitution of magnesium at CaI of nano-hydroxyapatite surface for highly efficient and selective removal of radioactive 90Sr from groundwater

Chemosphere. 2022 May:295:133874. doi: 10.1016/j.chemosphere.2022.133874. Epub 2022 Feb 4.

Abstract

We have modified the ion-exchange affinity of nano-Hydroxyapatite (Ca5(PO4)3OH, HAP) surface for the rapid and selective adsorption of 90Sr from groundwater. The modification was achieved by the post-substitution of cations (Na+, Mg2+, Cu2+, Ba2+, Fe3+, and Al3+) for parent Ca2+ within surface structure of HAP. The diffraction patterns of modified HAP showed a slight shift of the (002) peak between 25° and 27° 2θ depending the ionic radius of the substituted cation. Magnesium substituted HAP, Mg-HAP, exhibited the highest removal efficiency (>95%) for 10 ppm of Sr2+, which is attributable to the higher ion-exchange affinity of substituted Mg2+ than parent Ca2+ toward Sr2+. The results of various analyses revealed that Mg substitution dominantly occurred at the CaI site of HAP, which enabled the Mg-HAP to adsorb Sr2+ at both of CaI and CaII sites whereas bare HAP could adsorb Sr2+ mainly at CaII site. Adsorption isotherms and the kinetics of Mg-HAP for Sr2+ were evaluated using a bi-Langmuir isotherm and a pseudo-second-order kinetic model, which demonstrated the Mg-HAP exhibited the highest adsorption capacity (64.69 mg/g) and fastest adsorption kinetics (0.161-1.714 g/(mg·min)) than previously modified HAPs. In the presence of competing cations at circumneutral pHs, the enhanced performance of the Mg-HAP led to a greater than 97% reduction of 90Sr (initial radioactivity = 9500 Bq/L) within 1 h. The distribution coefficient of Mg-HAP was 1.3-6.6 × 103 mL/g while that of bare HAP was 1.2-6.6 × 102 mL/g. The findings in the present study highlight that the ion-exchange affinity of CaI and CaII sites on HAP surface plays a key-role in 90Sr uptake. The proposed modification method can simply increase the affinity of HAP surface, therefore, this work can further improve the deployment of an in situ remediation technology for 90Sr contaminated groundwater, i.e., Mg-HAP-based permeable reactive barrier.

MeSH terms

  • Adsorption
  • Durapatite / chemistry
  • Groundwater*
  • Magnesium
  • Radioactivity*
  • Strontium Radioisotopes

Substances

  • Strontium Radioisotopes
  • Strontium-90
  • Durapatite
  • Magnesium