Spatiotemporal Variation of Osmanthus fragrans Phenology in China in Response to Climate Change From 1973 to 1996

Front Plant Sci. 2022 Jan 20:12:716071. doi: 10.3389/fpls.2021.716071. eCollection 2021.

Abstract

Climate change greatly affects spring and autumn plant phenology around the world consequently, and significantly impacts ecosystem function and the social economy. However, autumn plant phenology, especially autumn flowering phenology, has not been studied so far. In this study, we examined the spatiotemporal pattern of Osmanthus fragrans phenology, including both leaf phenology (the date of bud-bust, BBD; first leaf unfolding, FLD; and 50% of leaf unfolding, 50 LD) and flowering phenology (the date of first flowering, FFD; peak of flowering, PFD; and end of flowering, EFD). Stepwise multiple linear regressions were employed to analyze the relationships between phenophases and climatic factors in the long term phenological data collected by the Chinese Phenological Observation Network from 1973 to 1996. The results showed that spring leaf phenophases and autumn flowering phenophases were strongly affected by latitude. BBD, FLD, and 50LD of O. fragrans were delayed by 3.98, 3.93, and 4.40 days as per degree of latitude increased, while FFD, PFD and EFD in O. fragrans advanced 3.11, 3.26, and 2.99 days, respectively. During the entire study period, BBD was significantly delayed across the region, whereas no significant trends were observed either in FLD or 50LD. Notably, all flowering phenophases of O. fragrans were delayed. Both leaf and flowering phenophases negatively correlated with growing degree-days (GDD) and cold degree-days (CDD), respectively. BBD and FLD were negatively correlated with total annual precipitation. In addition to the effects of climate on autumn flowering phenology, we found that earlier spring leaf phenophases led to delayed autumn flowering phenophases. Our results suggest that future climate change and global warming might delay the phenological sequence of O. fragrans. Our findings also advanced the flowering mechanism study of autumn flowering plants, and facilitated the accurate prediction of future phenology and climate change.

Keywords: China; Osmanthus fragrans; autumn flowering phenology; climate change; spring leaf phenology.