Normal Skeletal Standardized Uptake Values Obtained from Quantitative Single-Photon Emission Computed Tomography/Computed Tomography: Time-Dependent Study on Breast Cancer Patients

Indian J Nucl Med. 2021 Oct-Dec;36(4):398-411. doi: 10.4103/ijnm.ijnm_47_21. Epub 2021 Dec 15.

Abstract

Aim: To estimate the standard uptake values (SUVs) of Tc-99m methylene-diphosphonate (Tc-99m MDP) from normal skeletal sites in breast cancer patients using quantitative single-photon emission computed tomography (SPECT).

Materials and methods: A total of 60 breast cancer patients who underwent Tc-99m MDP SPECT/CT study at different postinjection acquisition times were included in this study. Based on postinjection acquisition time, patients were divided into four study groups (n_15 each), i.e. Ist (2 h), IInd (3 h), IIIrd (4 h), and IVth (5 h). Image quantification (SUVmax and SUVmean) was performed using Q.Metrix software. Delineation of volume of interest was shaped around different bones of the skeletal system.

Results: The highest normal SUVmax and SUVmean values were observed in lumber and thoracic vertebra (8.89 ± 2.26 and 2.89 ± 0.58) for Group I and in pelvis and thoracic (9.6 ± 1.32 and 3.04 ± 0.64), (10.93 ± 3.91 and 3.65 ± 0.97), (11.33 ± 2.67 and 3.65 ± 0.22) for Group II, III and IV, respectively. Lowest normal SUVmax and SUVmean values were observed in humerus and ribs (3.22 ± 0.67 and 0.97 ± 0.18), (5.16 ± 1.82 and 1.18 ± 0.16) for Group I, IV, and in humerus (3.17 ± 0.58 and 0.85 ± 0.26), (3.98 ± 1.12 and 1.04 ± 0.28) for Group II and III, respectively. Significant difference (P < 0.05) noted in SUVmax for sternum, cervical, humerus, ribs, and pelvis with respect to time. However, significant difference (P < 0.05) noted in SUVmean for all skeletal sites with respect to time.

Conclusions: Our study shows variability in normal SUV values for different skeletal sites in breast cancer patients. Vertebral bodies and pelvis contribute highest SUV values. Time dependency of SUVs emphasizes the usefulness of routinely acquired images at the same time after Tc-99m MDP injection, especially in follow-up studies.

Keywords: Bone uptake; Tc-99m methylene-diphosphonate; breast cancer; quantitative single-photon emission computed tomography/computed tomography; standard uptake values single-photon emission computed tomography.