Upcycling discarded cellulosic surgical masks into catalytically active freestanding materials

Cellulose (Lond). 2022;29(4):2223-2240. doi: 10.1007/s10570-022-04441-9. Epub 2022 Feb 1.

Abstract

Abstract: The COVID-19 pandemic outbreak has resulted in the massive fabrication of disposable surgical masks. As the accumulation of discarded face masks represents a booming threat to the environment, here we propose a solution to reuse and upcycle surgical masks according to one of the cornerstones of the circular economy. Specifically, the non-woven cellulosic layer of the masks is used as an environmentally sustainable and highly porous solid support for the controlled deposition of catalytically active metal-oxide nanoparticles. The native cellulosic fibers from the surgical masks are decorated by titanium dioxide (TiO2), iron oxide (FexOy), and cobalt oxide (CoOx) nanoparticles following a simple and scalable approach. The abundant surface -OH groups of cellulose enable the controlled deposition of metal-oxide nanoparticles that are photocatalytically active or shown enzyme-mimetic activities. Importantly, the hydrophilic highly porous character of the cellulosic non-woven offers higher accessibility of the pollutant to the catalytically active surfaces and high retention in its interior. As a result, good catalytic activities with long-term stability and reusability are achieved. Additionally, developed free-standing hybrids avoid undesired media contamination effects originating from the release of nanoscale particles. The upcycling of discarded cellulosic materials, such as the ones of masks, into high-added-value catalytic materials, results an efficient approach to lessen the waste´s hazards of plastics while enhancing their functionality. Interestingly, this procedure can be extended to the upcycling of other systems (cellulosic or not), opening the path to greener manufacturing approaches of catalytic materials.

Graphical abstract: A novel approach to upcycle discarded cellulosic surgical masks is proposed, providing a solution to reduce the undesired accumulation of discarded face masks originating from the COVID-19 pandemic. The non-woven cellulosic layer formed by fibers is used as solid support for the controlled deposition of catalytically active titanium dioxide (TiO2), iron oxide (FexOy), and cobalt oxide (CoOx) nanoparticles. Cellulosic porous materials are proven useful for the photocatalytic decomposition of organic dyes, while their peroxidase-like activity opens the door to advanced applications such as electrochemical sensors. The upcycling of cellulose nonwoven fabrics into value-added catalytic materials lessens the waste´s hazards of discarded materials while enhancing their functionality.

Supplementary information: The online version contains supplementary material available at 10.1007/s10570-022-04441-9.

Keywords: COVID-19 pandemic; Circular economy; Face masks; Nanozymes; Non-woven cellulose; Photocatalysis; Upcycling.