LpNAC6 reversely regulates the alkali tolerance and drought tolerance of Lilium pumilum

J Plant Physiol. 2022 Mar:270:153635. doi: 10.1016/j.jplph.2022.153635. Epub 2022 Feb 2.

Abstract

NAC transcription factors have multiple biological functions in plants. In this study, a new NAC transcription factor, LpNAC6, was cloned from Lilium pumilum, and its salt and drought resistance functions were identified. We treated LpNAC6 transgenic tobacco plants with different intensities of alkali and drought stress. Results showed that LpNAC6 transgenic tobacco had enhanced alkali tolerance, but decreased drought tolerance. Antioxidant enzyme (SOD, POD, CAT) activity, chlorophyll content, proline content, and photosynthetic capacity of transgenic tobacco were significantly higher than those of wild-type tobacco, while the contents of MDA, H2O2, and O2- were significantly lower than those of wild-type tobacco. The expression level of stress-related genes in transgenic tobacco increased significantly, and the alkali tolerance was enhanced, but the opposite was true under drought stress. Our findings suggest that LpNAC6 has a reverse regulatory effect on alkaline and drought tolerance in plants, which is of great significance for plant screening and stress tolerance regulation of transgenic plants in arid saline-alkali land.

Keywords: Abiotic stress; Lilium pumilum; LpNAC6 NAC transcription factor; Reverse regulation.