Integrated assessment of localized SSP-RCP narratives for climate change adaptation in coupled human-water systems

Sci Total Environ. 2022 Jun 1:823:153660. doi: 10.1016/j.scitotenv.2022.153660. Epub 2022 Feb 3.

Abstract

The assessment of climate change impacts requires downscaled climate projections and context-specific socioeconomic scenarios. The development of practical climate change adaptation for environmental sustainability at regional and local scales is predicated on a strong understanding of future socio-economic dynamics under a range of potential climate projections. We have addressed this need using integrated assessment of a localized hybrid Shared Socio-economic Pathway - Representative Concentration Pathway (SSP-RCP) framework, through an interdisciplinary and participatory storyline development process that integrates bottom-up local expert-stakeholder knowledge with top-down insights from global SSPs. We use the global SSPs (SSP1 to SSP5) as boundary conditions in conjunction with climate change pathways (RCP4.5, RCP8.5) to create localized SSP narratives in an iterative participatory process, using a storytelling method. By using an integrated socio-economic and environmental system dynamics model developed in collaboration with local stakeholders, we explore the potential impacts of plausible local SSP-RCP narratives and quantify important socio-environmental vulnerabilities of a human-water system (e.g., crop yields, farm income, water security and groundwater depletion) by the mid-century period (i.e., by 2050). The framework is developed to inform climate adaptation for Pakistan's Rechna Doab region, which serves as a representative case of a multi-stakeholder coupled human-water system operating in a developing country. Our results suggest that even under limited socio-economic improvements (e.g., technology, policies, institutions, environmental awareness) water security would be expected to decline and environmental degradation (e.g., groundwater depletion) to worsen. Under RCP 4.5, the average projected increase in water demand in 2030 will be about 7.32% for all SSP scenario narratives, and 10.82% by mid-century. Groundwater use varies significantly across SSPs which results in an average increase of about 29.06% for all SSPs. The proposed framework facilitates the development of future adaptation policies that should consider regional and local planning as well as socio-economic conditions.

Keywords: Climate adaptation; Integrated system dynamic modeling; Local socio-economic scenarios; Participatory approach; SSP–RCP scenario framework; Storytelling.

MeSH terms

  • Acclimatization
  • Adaptation, Physiological
  • Climate Change*
  • Humans
  • Models, Theoretical
  • Water*

Substances

  • Water