Nutrient starvation intensifies chlorine disinfection-stressed biofilm formation

Chemosphere. 2022 May:295:133827. doi: 10.1016/j.chemosphere.2022.133827. Epub 2022 Feb 2.

Abstract

Bacterial surface attachment and subsequent biofilm expansion represent an essential adaptation to environmental signals and stresses, which are of great concern for many natural and engineered ecosystems. Yet the underlying mechanisms and driving forces of biofilm formation in a chlorinated and nutrient-restricted system remain sketchy. In this study, we coupled an experimental investigation and modeling simulation to understand how chlorination and nutrient limitation conspire to form biofilm using Pseudomonas aeruginosa as a model bacterium. Experimental results showed that moderate chlorination at 1.0 mg/L led to biofilm development amplified to 2.6 times of those without chlorine, while additional nutrient limitation (of 1/50-diluted or 0.4 g/L LB broth culture) achieved 4.6 times increment as compared to those of undiluted scenarios (of 20 g/L LB broth culture) with absence of chlorination after 24 h exposure. Meanwhile, intermediate chlorination stimulated instant flagellar motility and subsequently extracellular polymeric substances (EPS) secretion, particularly under limited nutrient condition (of 1/50-diluted or 0.4 g/L LB broth culture) that retarded chlorine consumption and provoked bacterial nutrient-limitation response. From our simulations, chlorine and resource levels along with associated spatio-temporal variations collectively drove bacterial cell movement and EPS excretion. Our results demonstrated that restraining nutrient intensified chlorination-excited cell movement and EPS production that reinforced biological and cell-surface interactions, thereby encouraging bacterial surface attachment and subsequent biofilm development. The findings provide the insights into the linkage of disinfectant and nutrient-regulated bacterial functional responses with consequent micro-habitats and biofilm dynamics.

Keywords: Biofilm formation; Chlorination; EPS; Flagellar motility; Nutrient limitation.

MeSH terms

  • Biofilms
  • Chlorine* / pharmacology
  • Disinfection*
  • Ecosystem
  • Nutrients

Substances

  • Chlorine