Chemoselective Transamidation of Thioamides by Transition-Metal-Free N-C(S) Transacylation

Angew Chem Int Ed Engl. 2022 Apr 11;61(16):e202200144. doi: 10.1002/anie.202200144. Epub 2022 Feb 23.

Abstract

Thioamides represent highly valuable isosteric in the strictest sense "single-atom substitution" analogues of amides that have found broad applications in chemistry and biology. A long-standing challenge is the direct transamidation of thioamides, a process which would convert one thioamide bond (R-C(S)-NR1 R2 ) into another (R-C(S)-NR3 N4 ). Herein, we report the first general method for the direct transamidation of thioamides by highly chemoselective N-C(S) transacylation. The method relies on site-selective N-tert-butoxycarbonyl activation of 2° and 1° thioamides, resulting in ground-state-destabilization of thioamides, thus enabling to rationally manipulate nucleophilic addition to the thioamide bond. This method showcases a remarkably broad scope including late-stage functionalization (>100 examples). We further present extensive DFT studies that provide insight into the chemoselectivity and provide guidelines for the development of transamidation methods of the thioamide bond.

Keywords: C−N Bond Activation; Reaction Mechanisms; Sulfur; Thioamides; Transamidation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amides
  • Thioamides* / chemistry
  • Transition Elements*

Substances

  • Amides
  • Thioamides
  • Transition Elements