The cancer-testis lncRNA lnc-CTHCC promotes hepatocellular carcinogenesis by binding hnRNP K and activating YAP1 transcription

Nat Cancer. 2022 Feb;3(2):203-218. doi: 10.1038/s43018-021-00315-4. Epub 2022 Jan 10.

Abstract

Cancer-testis (CT) genes participate in the initiation and progression of cancer, but the role of CT-associated long non-coding RNAs (CT-lncRNAs) in hepatocellular carcinoma (HCC) is still elusive. Here, we discovered a conserved CT-lncRNA, named lnc-CTHCC, which was highly expressed in the testes and HCC. A lnc-CTHCC-knockout (KO) mouse model further confirmed that the global loss of lnc-CTHCC inhibited the occurrence and development of HCC. In vitro and in vivo assays also showed that lnc-CTHCC promoted HCC growth and metastasis. Mechanistically, lnc-CTHCC bound to heterogeneous nuclear ribonucleoprotein K (hnRNP K), which was recruited to the YAP1 promoter for its activation. Additionally, the N6-methyladenosine (m6A) modification was mediated by N6-adenosine-methyltransferase 70-kDa subunit (METTL3) and recognized by insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1)/IGF2BP3, which maintained lnc-CTHCC stability and increased its expression in HCC. Together, our results show that lnc-CTHCC directly binds to hnRNP K and promotes hepatocellular carcinogenesis and progression by activating YAP1 transcription, suggesting that lnc-CTHCC is a potential biomarker and therapeutic target of HCC.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carcinogenesis / genetics
  • Carcinoma, Hepatocellular* / genetics
  • Heterogeneous-Nuclear Ribonucleoprotein K / genetics
  • Liver Neoplasms* / genetics
  • Male
  • Mice
  • RNA, Long Noncoding* / genetics
  • Testis / metabolism

Substances

  • Heterogeneous-Nuclear Ribonucleoprotein K
  • RNA, Long Noncoding