Characteristics and assessing biological risks of airborne bacteria in waste sorting plant

Ecotoxicol Environ Saf. 2022 Mar 1:232:113272. doi: 10.1016/j.ecoenv.2022.113272. Epub 2022 Feb 1.

Abstract

Examining the concentration and types of airborne bacteria in waste paper and cardboard sorting plants (WPCSP) is an urgent matter to inform policy makers about the health impacts on exposed workers. Herein, we collected 20 samples at 9 points of a WPCSP every 6 winter days, and found that the most abundant airborne bacteria were positively and negatively correlated to relative humidity and temperature, respectively. The most abundant airborne bacteria (in units of CFU m-3) were: Staphylococcus sp. (72.4) > Micrococcus sp. (52.2) > Bacillus sp. (30.3) > Enterococcus sp. (24.0) > Serratia marcescens (20.1) > E. coli (19.1) > Pseudomonas sp. (16.0) > Nocardia sp. (1.9). The lifetime average daily dose (LADD) for the inhalation and dermal routes for the intake of airborne bacteria ranged from 3.7 × 10-3 ≤ LADDInhalation ≤ 2.07 × 101 CFU (kg d)-1 and 4.75 × 10-6 ≤ LADDDermal ≤ 1.64 × 10-5 CFU (kg d)-1, respectively. Based on a sensitivity analysis (SA), the concentration of airborne bacteria (C) and the exposure duration (ED) had the most effect on the LADDInhalation and LADDDermal for all sampling locations. Although the Hazard Quotient of airborne bacteria was HQ < 1, an acceptable level, the indoor/outdoor ratio (1.5 ≤ I/O ≤ 6.6) of airborne bacteria typically exceeded the threshold value (I/O > 2), indicating worker's exposure to an infected environment. Therefore, in the absence of sufficient natural ventilation the indoor ambient conditions of the WPCSP studied should be controlled by supplying mechanical ventilation.

Keywords: Airborne bacteria; Hazard quotient; Health risk assessment; Indoor/outdoor bacteria; Paper and cardboard.

MeSH terms

  • Air Microbiology*
  • Air Pollution, Indoor* / analysis
  • Bacteria
  • Environmental Monitoring
  • Escherichia coli
  • Fungi
  • Humans
  • Occupational Exposure*
  • Refuse Disposal*
  • Seasons