Total mRNA and primary human myoblasts' in vitro cell cycle progression distinguishes between clones

Biochimie. 2022 May:196:161-170. doi: 10.1016/j.biochi.2022.01.010. Epub 2022 Feb 1.

Abstract

Satellite cells are generally quiescent in vivo. Once activated, progression through the cell cycle begins. Immortalised myoblasts from a single cell line are fairly homogenous in culture, but primary human myoblasts (PHMs) demonstrate heterogeneity. This phenomenon is poorly understood however may impact on PHM expansion. This study aimed to evaluate cell cycle transition from growth to synthesis phases of the cell cycle (G1 to S phase) and total mRNA relevant to this transition in PHM clones derived from 2 donor biopsies. Proportions of cells transitioning from G1 to S phase were evaluated at 2-hourly intervals for 24 h (n = 3 for each) and total mRNA quantified. Both PHM clones revealed an exponential transition from G1 to S phase over time, with a significantly slower rate for PHMs from S9.1 compared to S6.3, which had a higher proportion of PHMs in S phase for most time-points (p < 0.05). After 24 h the proportion of PHMs in S phase was ∼13% (S6.3) compared to ∼22% (S9.1). Gene transcription increased as cells progressed from G1 to S phase. Although total RNA increased with similar linearity in both clones, S6.3 PHMs had consistently (10 out of 12 time points) significantly higher concentrations. Validating the 2-hourly assessment over 24 h, a 4-hourly assessment from 8 to 32 h revealed similar differences but included the beginning of a plateau. This study demonstrates that PHMs from different donors differ in both cell cycle progression and overall transcriptome revealing new aspects in the heterogeneity of isolated satellite cells in vitro.

Keywords: Cell cycle; Donor variation; Heterogeneity; Primary human myoblasts; Satellite cells; Transcription.

MeSH terms

  • Cell Cycle / genetics
  • Clone Cells
  • Humans
  • Myoblasts*
  • RNA, Messenger / genetics
  • S Phase

Substances

  • RNA, Messenger