Cell-type-specific responses to associative learning in the primary motor cortex

Elife. 2022 Feb 3:11:e72549. doi: 10.7554/eLife.72549.

Abstract

The primary motor cortex (M1) is known to be a critical site for movement initiation and motor learning. Surprisingly, it has also been shown to possess reward-related activity, presumably to facilitate reward-based learning of new movements. However, whether reward-related signals are represented among different cell types in M1, and whether their response properties change after cue-reward conditioning remains unclear. Here, we performed longitudinal in vivo two-photon Ca2+ imaging to monitor the activity of different neuronal cell types in M1 while mice engaged in a classical conditioning task. Our results demonstrate that most of the major neuronal cell types in M1 showed robust but differential responses to both the conditioned cue stimulus (CS) and reward, and their response properties undergo cell-type-specific modifications after associative learning. PV-INs' responses became more reliable to the CS, while VIP-INs' responses became more reliable to reward. Pyramidal neurons only showed robust responses to novel reward, and they habituated to it after associative learning. Lastly, SOM-INs' responses emerged and became more reliable to both the CS and reward after conditioning. These observations suggest that cue- and reward-related signals are preferentially represented among different neuronal cell types in M1, and the distinct modifications they undergo during associative learning could be essential in triggering different aspects of local circuit reorganization in M1 during reward-based motor skill learning.

Keywords: inhibitory neurons; motor cortex; mouse; neuroscience; two-photon calcium imaging.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Female
  • Learning / physiology*
  • Male
  • Mice
  • Motor Cortex / cytology*
  • Motor Cortex / physiology*
  • Neurons / classification
  • Neurons / physiology

Associated data

  • Dryad/10.5061/dryad.q573n5tjj

Grants and funding

The funders had no role in study design, data collection, and interpretation, or the decision to submit the work for publication.