Nonsolid TiOx Nanoparticles/PVDF Nanocomposite for Improved Energy Storage Performance

ACS Appl Mater Interfaces. 2022 Feb 16;14(6):8226-8234. doi: 10.1021/acsami.1c18544. Epub 2022 Feb 3.

Abstract

Nanofiller/polymer nanocomposites are promising dielectrics for energy harvesting to be applied in wearable and flexible electronics. The structural design of the nanofillers plays a vital role to improve the energy storage performance of the related nanocomposites. Here, we fabricate a flexible device based on nonsolid titanium oxide (TiOx) nanoparticles/poly(vinylidene fluoride) (PVDF) to achieve enhanced energy storage performance at low loading. The room-temperature oxidation method is used to oxidize two-dimensional MXene (Ti3C2Tx) flakes to form partially hollow TiOx nanoparticles. Taking advantage of this structure, the flexible TiOx nanoparticles/PVDF nanocomposite with an ultralow loading content of 1 wt % nanofillers shows high energy storage performance, including a dielectric constant of ≈22 at 1 kHz, a breakdown strength of ≈480 MV m-1, and an energy storage density of 7.43 J cm-3. The finite element simulation further reveals that the optimization of the energy storage performance is ascribed to the lower electric potential among the partially hollow TiOx nanoparticles, which enhances the breakdown strength of the nanocomposites. This work opens a new avenue to structurally design and fabricate low-loading polymer-based nanocomposites for energy storage applications in next-generation flexible electronics.

Keywords: TiOx/PVDF nanocomposites; breakdown strength; dielectric property; energy storage density; finite element simulation.